

HCM634K - Technical Data Sheet

HCM634K SPECIFICATIONS & OPTIONS

STANDARDS

Marine generators may be certified to Lloyds, DnV, Bureau Veritas, ABS, Germanischer-Lloyd or RINA. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

MX321 AVR - STANDARD

This sophisticated Automatic Voltage Regulator (AVR) is incorporated into the Stamford Permanent Magnet Generator (PMG) system and is fitted as standard to generators of this type.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

Over voltage protection is built-in and short circuit current level adjustment is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

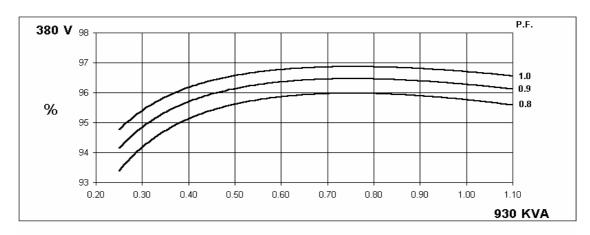
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

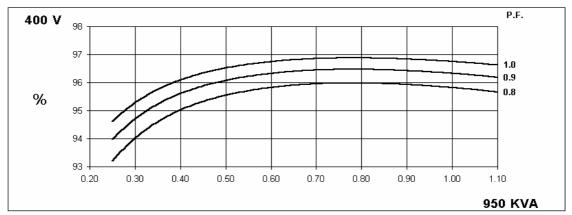
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

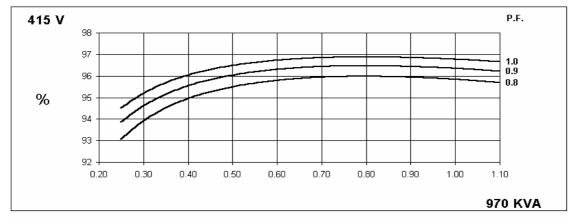
Front cover drawing typical of product range.

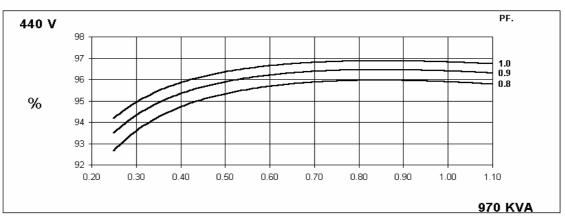
WINDING 312

CONTROL SYSTEM	SEPARATE	PARATELY EXCITED BY P.M.G.						
A.V.R.	MX321							
VOLTAGE REGULATION	± 0.5 %	With 4% ENGINE GOVERNING						
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIRCUIT DECREMENT CURVES (page 7)						

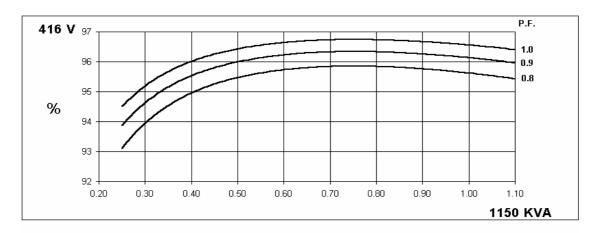

INSULATION SYSTEM				CLA	SS H									
PROTECTION				IP	23									
RATED POWER FACTOR				0	.8									
STATOR WINDING				DOUBLE L	AYER LAP									
WINDING PITCH	TWO THIRDS													
WINDING LEADS		6												
STATOR WDG. RESISTANCE		0.00)17 Ohms Pl	ER PHASE A	AT 22°C STAR CONNECTED									
ROTOR WDG. RESISTANCE				2.36 Ohm	s at 22°C									
EXCITER STATOR RESISTANCE				17 Ohms	at 22°C									
EXCITER ROTOR RESISTANCE			0.079	Ohms PER	PHASE AT	22°C								
R.F.I. SUPPRESSION	BS EN	61000-6-2 &	BS EN 6100	0-6-4,VDE ()875G, VDE	0875N. refe	r to factory fo	or others						
WAVEFORM DISTORTION		NO LOAD <												
MAXIMUM OVERSPEED				2250 F	Rev/Min									
BEARING DRIVE END				BALL. 62	224 (ISO)									
BEARING NON-DRIVE END				BALL. 63	317 (ISO)									
		1 BEA	ARING		(/	2 BEA	ARING							
WEIGHT COMP. GENERATOR		254	1 kg		2581 kg									
WEIGHT WOUND STATOR		129	4 kg		1294 kg									
WEIGHT WOUND ROTOR		109	3 kg		1408 kg									
WR² INERTIA		26.529	05 kgm²		25.9823 kgm²									
SHIPPING WEIGHTS in a crate			1 kg		2622 kg									
PACKING CRATE SIZE			x 147(cm)		194 x 92 x 147(cm)									
			Hz		60 Hz									
TELEPHONE INTERFERENCE		THE	·<2%		TIF<50									
COOLING AIR			ec 3420 cfm		1.961 m³/sec 4156 cfm									
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277						
kVA BASE RATING FOR REACTANCE VALUES	930	950	970	970	1150	1200	1238	1275						
Xd DIR. AXIS SYNCHRONOUS	2.33	2.15	2.04	1.81	2.89	2.69	2.54	2.40						
X'd DIR. AXIS TRANSIENT	0.18	0.17	0.17	0.15	0.23	0.22	0.21	0.20						
X"d DIR. AXIS SUBTRANSIENT	0.13	0.12	0.11	0.10	0.16	0.15	0.14	0.13						
Xq QUAD. AXIS REACTANCE	1.37	1.26	1.20	1.06	1.70	1.58	1.49	1.41						
X"q QUAD. AXIS SUBTRANSIENT	0.19	0.18	0.17	0.15	0.24	0.22	0.21	0.20						
XL LEAKAGE REACTANCE	0.07	0.06	0.05	0.05	0.08	0.07	0.07	0.06						
X2 NEGATIVE SEQUENCE	0.18	0.17	0.17	0.15	0.23	0.22	0.21	0.20						
X ₀ ZERO SEQUENCE	0.03	0.02	0.02	0.02	0.03	0.03	0.03	0.03						
REACTANCES ARE SATURAT														
T'd TRANSIENT TIME CONST.					85 s									
T"d SUB-TRANSTIME CONST.					25 s									
T'do O.C. FIELD TIME CONST.		3.4s												
Ta ARMATURE TIME CONST.	0.049 s													
SHORT CIRCUIT RATIO	1/Xd													

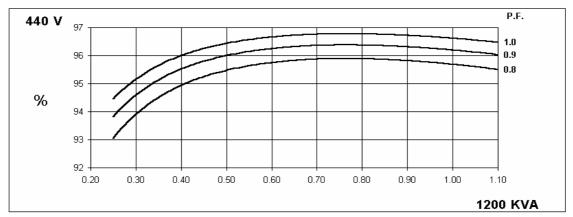

50 Hz

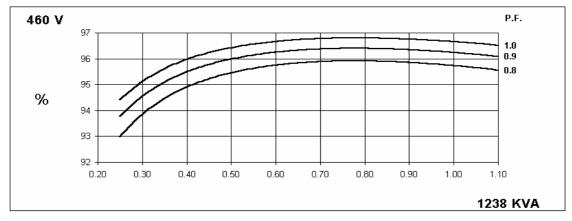

HCM634K Winding 312

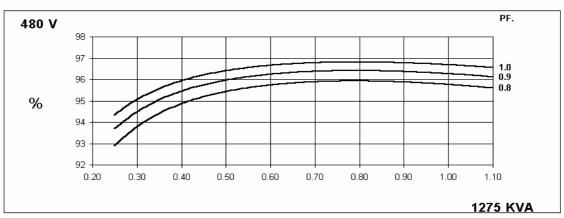


THREE PHASE EFFICIENCY CURVES

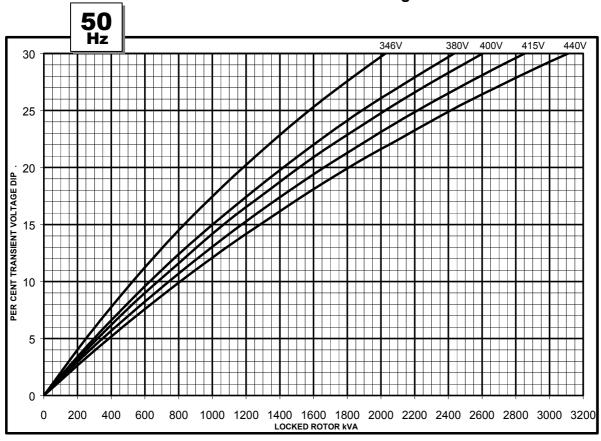


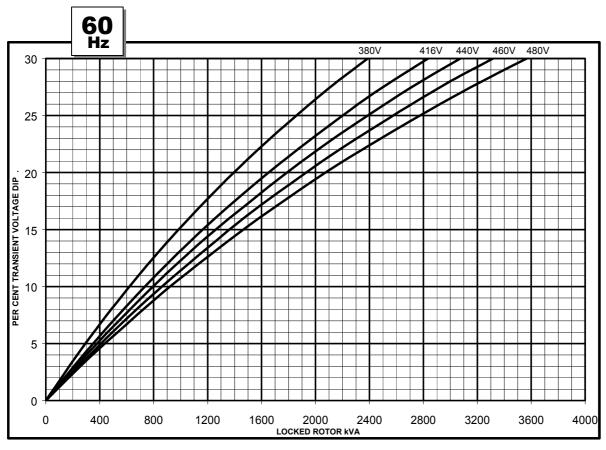



Winding 312


60 Hz

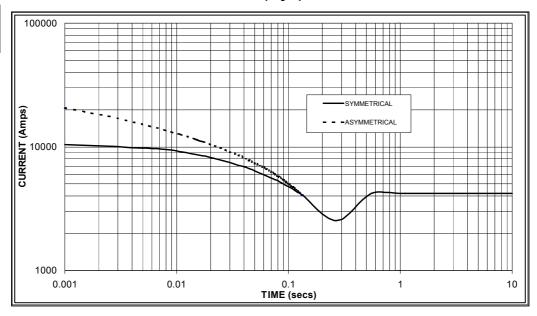
THREE PHASE EFFICIENCY CURVES

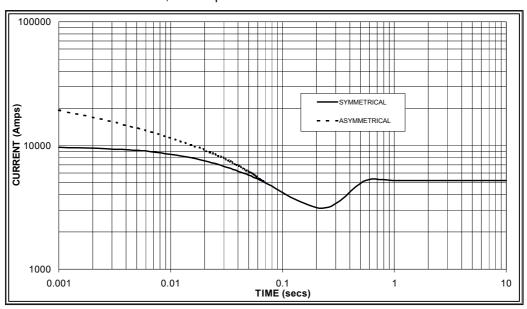




HCM634K Winding 312

Locked Rotor Motor Starting Curve




Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

50 Hz

Sustained Short Circuit = 4,200 Amps

60 Hz

Sustained Short Circuit = 5,200 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	X 1.00
400v	X 1.07	440v	X 1.06
415v	X 1.12	460v	X 1.12
440v	X 1.18	480v	X 1.17
The sustains	المنيا المسمونية الم	:	4

The sustained current value is constant irrespective of voltage level

Note 2

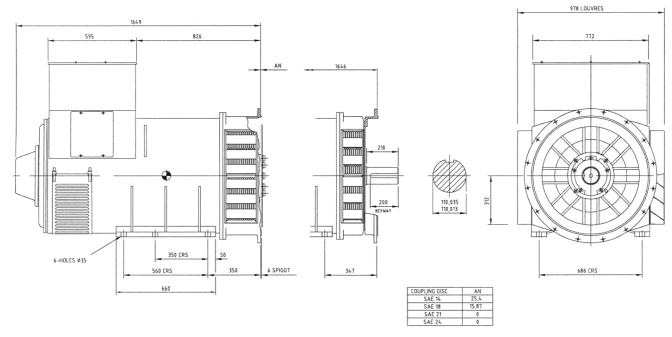
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit:

	3-phase	2-phase L-L	1-phase L-N						
Instantaneous	x 1.00	x 0.87	x 1.30						
Minimum	x 1.00	x 1.80	x 3.20						
Sustained	x 1.00	x 1.50	x 2.50						
Max. sustained duration	10 sec.	5 sec.	2 sec.						
All other times are unchanged									

Note 3

Curves are drawn for Star (Wye) connected machines. For Delta connection the following multiplier should be used:

Delta = Curve current X 1.732


Winding 312 / 0.8 Power Factor

RATINGS

	Class - Temp Rise	С	ont. E -	65/50°	С	Cont. B - 70/50°C				C	ont. F -	· 90/50°	С	Cont. H - 110/50°C			
50	Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
1 12	kVA	750	770	790	790	790	800	820	820	900	920	940	940	930	950	970	970
	kW	600	616	632	632	632	640	656	656	720	736	752	752	744	760	776	776
	Efficiency (%)	96.0	96.0	96.0	96.0	95.9	96.0	96.0	96.0	95.8	95.9	95.9	95.9	95.8	95.8	95.8	95.9
	kW Input	625	642	658	658	659	667	683	683	752	767	784	784	777	793	810	809

60	Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	888	931	963	988	925	965	1000	1010	1063	1113	1150	1181	1150	1200	1238	1275
	kW	710	745	770	790	740	772	800	808	850	890	920	945	920	960	990	1020
	Efficiency (%)	95.8	95.9	95.9	95.9	95.8	95.9	95.9	95.9	95.7	95.8	95.8	95.9	95.6	95.7	95.7	95.8
	kW Input	742	777	803	824	772	805	834	843	889	929	960	985	962	1003	1035	1065

DIMENSIONS

Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100 Website: www.newage-avkseg.com